Sales-Performance-Analysis

📊 Sales Performance Analysis – End-to-End Data Analyst Project

📝 Project Overview

This project provides a comprehensive sales performance analysis using SQL, Python, Power BI, and professional reporting. It demonstrates the full data analyst workflow: data cleaning, KPI creation, exploratory data analysis (EDA), A/B testing, dashboarding, and business reporting. The objective is to uncover sales trends, evaluate performance vs. targets, and provide actionable insights for better decision-making.


🎯 Objectives


🛠️ Tech Stack


📂 Project Structure

Sales Performance/
│
├── AB Testing/
│   └── ab_test_basic.py                 # A/B testing in Python
│
├── Dashboard/
│   └── Sales_Performance.pbix           # Power BI dashboard
│
├── Data Sets/
│   ├── Sales_Raw.csv                    # Raw dataset
│   ├── Sales_Cleaned.csv                # Cleaned dataset (CSV)
│   ├── Sales_Cleaned.xlsx               # Cleaned dataset (Excel)
│   ├── List of Orders.csv               # Orders data
│   ├── Order Details.csv                # Order details
│   └── Sales_Target.csv                 # Sales targets
│
├── EDA Analysis/
│   └── Sales_EDA.ipynb                  # Jupyter notebook for EDA
│
├── SQL/
│   ├── 01_data_cleaning.sql             # Cleaning scripts
│   ├── 02_data_quality.sql              # Quality checks
│   ├── 03_feature_engineering.sql       # Feature creation
│   ├── 05_kpi_calculations.sql          # KPI monitoring
│   └── ...                              # Other analysis queries
│
├── T-SQL/
│   └── sales_queries_tsql.sql           # SQL Server version queries
│
├── Images/
│   ├── Chart (1-15).png                 # Visualization charts
│
├── Reports/
│   ├── Sales_Performance_Dashboard_Report.pdf  # Dashboard summary
│   └── Sales_Performance_Overall_Report.pdf    # Full project report

🔎 Key Analyses & Deliverables

1. Data Cleaning & KPI Monitoring (SQL)

2. Exploratory Data Analysis (Python)

3. Dashboarding (Power BI)

📸 Preview: Sales Overview Regional Performance Customer Insights Category Performance

4. A/B Testing (Python)

5. Business Reporting



📈 Key Insights


🚀 Getting Started

Clone the Repository

git clone https://github.com/Sohitha-01/Sales-Performance-Analysis.git
cd Sales-Performance-Analysis

Explore the Data

Run SQL Queries

View Dashboards

Visual Reports

Run A/B Test


📊 Visualizations

The Images/ folder contains 15 charts covering:


🏆 Why This Project Matters

This project demonstrates the end-to-end skillset of a data analyst: ✔️ SQL/T-SQL for ETL and KPIs
✔️ Python for EDA and A/B testing
✔️ Power BI for interactive dashboards
✔️ Business reports for stakeholder communication


🤝 Contributing

Contributions are welcome! To contribute:

  1. Fork the repository.
  2. Create a new feature branch (git checkout -b feature-name).
  3. Commit your changes (git commit -m "Add feature").
  4. Push to your branch (git push origin feature-name).
  5. Open a Pull Request.

📜 License

This project is open-source and licensed. Feel free to use it for learning or portfolio purposes.